ADDITIONS AND CORRECTIONS

2007, Volume 111A

Kenshi Takahashi,* Erika Iwasaki, Yutaka Matsumi, and Timothy J. Wallington: Pulsed Laser Photolysis Vacuum UV Laser-Induced Fluorescence Kinetic Study of the Gas-Phase Reactions of $Cl(^{2}P_{3/2})$ Atoms with $C_{3}-C_{6}$ Ketones Page 1271. We have discovered several typographical errors in Tables 1 and 2. The errors are minor and do not alter any of the conclusions in the paper. To avoid confusion in the future, corrected versions of Tables 1 and 2 are given below. Correc-

The second of th	TABLE 1:	Rate	Coefficients for	or Reactions	of Cl	Atoms	with	Selected	Ketones	at Room	Temperature
--	----------	------	------------------	--------------	-------	-------	------	----------	---------	---------	-------------

compound	rate coefficient ^a	total pressure ^b	buffer gas	experimental technique ^c	ref
acetone	$(2.37 \pm 0.12) \times 10^{-12}$	700	N_2	relative	2
	$(1.69 \pm 0.32) \times 10^{-12}$	760	N_2	relative	3
	$(3.06 \pm 0.38) \times 10^{-12}$	15-60	He	PLP-RF	4
	$(2.0 \pm 0.3) \times 10^{-12}$	760	air	relative	5
	$(2.2 \pm 0.4) \times 10^{-12}$	700	O_2/N_2	relative	6
	$(2.93 \pm 0.20) \times 10^{-12}$	20-200	He	PLP-RF	7
	$(2.00 \pm 0.09) \times 10^{-12}$	760	air	relative	8
	$(2.2 \pm 0.4) \times 10^{-12}$	760	N_{2} air	relative	9
	$(2.20 \pm 0.14) \times 10^{-12}$	1	He	DF-MS	10
	$(2.30 \pm 0.12) \times 10^{-12}$	6.6	Ar	PLP-LIF	this work
butanone	$(4.13 \pm 0.57) \times 10^{-11}$	700	N_2	relative	2
	$(3.24 \pm 0.38) \times 10^{-11}$	15-60	He	PLP-RF	4
	$(3.30 \pm 0.20) \times 10^{-11}$	20-200	He	PLP-RF	7
	$(3.27 \pm 0.55) \times 10^{-11}$	60-80	He	PLP-RF	11
	$(4.04 \pm 0.33) \times 10^{-11}$	700	N_{2} , air	relative	1
	$(4.08 \pm 0.21) \times 10^{-11}$	6.6	Ar	PLP-LIF	this work
2-pentanone	$(4.57 \pm 0.28) \times 10^{-11}$	20-200	He	PLP-RF	7
•	$(4.17 \pm 1.21) \times 10^{-11}$	60-80	He	PLP-RF	11
	$(1.11 \pm 0.10) \times 10^{-10}$	700	N_{2} , air	relative	1
	$(1.23 \pm 0.13) \times 10^{-10}$	6.6	Ar	PLP-LIF	this work
3-pentanone	$(4.50 \pm 0.32) \times 10^{-11}$	20-200	He	PLP-RF	7
1	$(5.9 \pm 0.5) \times 10^{-11}$	1	He	DF-MS	12
	$(8.10 \pm 0.85) \times 10^{-11}$	700	N_{2} air	relative	1
	$(8.87 \pm 0.92) \times 10^{-11}$	6.6	Ar	PLP-LIF	this work
cyclopentanone	$(4.76 \pm 0.33) \times 10^{-11}$	760	N_2	relative	3
	$(1.11 \pm 0.10) \times 10^{-10}$	700	N_2	relative	13
	$(1.16 \pm 0.12) \times 10^{-10}$	6.6	Ar	PLP-LIF	this work
2-hexanone	$(6.54 \pm 0.58) \times 10^{-11}$	20-200	He	PLP-RF	7
	$(6.56 \pm 0.98) \times 10^{-11}$	60-80	He	PLP-RF	11
	$(1.88 \pm 0.18) \times 10^{-10}$	700	N ₂ , air	relative	1
	$(2.08 \pm 0.32) \times 10^{-10}$	6.6	Ar	PLP-LIF	this work
3-hexanone	$(6.69 \pm 0.62) \times 10^{-11}$	20-200	He	PLP-RF	7
	$(8.3 \pm 1.7) \times 10^{-11}$	1	He	DF-MS	12
	$(1.43 \pm 0.19) \times 10^{-10}$	700	N_{2} , air	relative	1
	$(1.43 \pm 0.19) \times 10^{-10}$	6.6	Ar	PLP-LIF	this work

^{*a*} Units of cm³ molecule⁻¹ s⁻¹, uncertainties are 2σ statistical errors ^{*b*} Units of Torr ^{*c*} Experimental techniques: RR, relative rate; PLP-LIF, pulsed laser photolysis coupled with vacuum ultraviolet laser-induced fluorescence spectroscopy; PLP-RF, pulsed laser photolysis coupled with resonance fluorescence detection; DF–MS, discharge flow mass spectrometric technique.

TABLE 2: Rate Coefficients for Cl and OH Reactions and Estimated Atmospheric 1	Lifetimes
--	-----------

		-		
compound	k ^{OH a}	$k^{\operatorname{Cl} b}$	$ au_{ m OH}/ m day^c$	$ au_{ m Cl}/{ m day}^d$
acetone	$1.8 imes 10^{-13} e$	2.30×10^{-12}	64.3	50-500
2-butanone	$1.2 \times 10^{-12} e$	4.08×10^{-11}	9.6	3-30
2-pentanone	$4.56 \times 10^{-12 f}$	1.23×10^{-10}	2.5	0.9-9.0
3-pentanone	$2.9 \times 10^{-12} g$	8.87×10^{-11}	5.6	1.3-13
cyclopentanone	$2.94 \times 10^{-12 h}$	$1.16 imes10^{-10}$	4.0	1-10
2-hexanone	$6.64 \times 10^{-12} g$	$2.08 imes10^{-10}$	1.7	0.6-6.0
3-hexanone	$6.96 \times 10^{-12} i$	$1.43 imes10^{-10}$	1.7	0.8-8.0

^{*a*} In units of cm³molecule⁻¹s⁻¹. ^{*b*} Determined in this work. In units of cm³molecule⁻¹s⁻¹. ^{*c*} Lifetime with respect to reaction with OH radicals assuming [OH] = 10^6 cm⁻³. ^{*d*} Lifetime with respect to reaction with Cl atoms assuming [Cl] = 10^{4-10^5} cm⁻³. ^{*e*} Atkinson et al.¹⁴ ^{*f*} Atkinson et al.¹⁵ ^{*s*} Wallington and Kurylo¹⁶ ^{*h*} Dagaut et al.¹⁷ ^{*i*} Atkinson et al.¹⁸

Acknowledgment. We thank Bill Kaiser (University of Michigan) for helpful discussions.

References and Notes

(1) Taketani, F.; Matsumi, Y.; Wallington, T. J.; Hurley, M. D. Chem. Phys. Lett. 2006, 431, 257.

- (2) Wallington, T. J.; Andino, J. M.; Ball, J. C.; Japar, S. M. J. Atmos. Chem. 1990, 10, 301.
- (3) Olsson, B. E. R.; Hallquist, M.; Ljungstrom, E.; Davidsson, J. Int. J. Chem. Kinet. **1997**, 29, 195.
- (4) Notario, A.; Mellouki, A.; Le Bras, G. *Int. J. Chem. Kinet.* **2000**, *32*, 62.
- (5) Orlando, J. J.; Tyndall, G. S.; Vereecken, L.; Peeters, J. J. Phys. Chem. A **2000**, 104, 11578.
- (6) Christensen, L. K.; Ball, J. C.; Wallington, T. J. J. Phys. Chem. A 2000, 104, 345.

(7) Albaladejo, J.; Notario, A.; Cuevas, C. A.; Ballesteros, B.; Martinez, E. J. Atmos. Chem. **2003**, *45*, 35.

(8) Sellevag, S. R.; Nielsen, C. J. Asian Chem. Lett. 2003, 7, 15.

(9) Carr, S.; Shallcross, D. E.; Canosa-Mas, C. E.; Wenger, J. C.; Sidebottom, H. W.; Treacy, J. J.; Wayne, R. P. *Phys. Chem. Chem. Phys.* 2003 5, 3874

(10) Martinez, E.; Aranda, A.; Diaz de Mera, Y.; Rodriguez, A.; Rodriguez, D.; Notario, A. J. Atmos. Chem. 2004, 48, 283.

(11) Cuevas, C. A.; Notario, A.; Martinez, E.; Albaladejo, J. Phys. Chem. Chem. Phys. 2004, 6, 2230.

(12) Aranda, A.; Diaz de Mera, Y.; Rodriguez, A.; Morales, L.; Martinez,
 E. J. Phys. Chem. A 2004, 108, 7027.

(13) Wallington, T. J.; Guschin, A.; Hurley, M. D. Int. J. Chem. Kinet. 1998, 30, 309.

(14) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.; Troe, J. Atmos. Chem. Phys. 2006, 6, 3625.

(15) Atkinson, R.; Tuazon, E. C.; Aschmann, S. M. Environ. Sci. Technol., 2000, 34, 623.

(16) Wallington, T. J.; Kurylo, M. J. J. Phys. Chem. 1987, 91, 5050.
(17) Dagaut, P.; Wallington, T. J.; Liu, R.; Kurylo, M. J. J. Phys. Chem. 1988, 92, 4375.

(18) Atkinson, R.; Aschmann, S. M.; Carter, W. P. L.; Pitts, J. N., Jr. Int. J. Chem. Kinet. 1982, 14, 839.

10.1021/jp074638+

Published on Web 07/10/2007